Osmium tetroxide as a probe of RNA structure.

Title Osmium tetroxide as a probe of RNA structure.
Authors J. Zhang; D. Li; J. Zhang; D. Chen; A.I.H. Murchie
Journal RNA
DOI 10.1261/rna.057539.116
Abstract

Structured RNAs have a central role in cellular function. The capability of structured RNAs to adopt fixed architectural structures or undergo dynamic conformational changes contributes to their diverse role in the regulation of gene expression. Although numerous biophysical and biochemical tools have been developed to study structured RNAs, there is a continuing need for the development of new methods for the investigation of RNA structures, especially methods that allow RNA structure to be studied in solution close to its native cellular conditions. Here we use osmium tetroxide (OsO4) as a chemical probe of RNA structure. In this method, we have used fluorescence-based sequencing technologies to detect OsO4 modified RNA. We characterized the requirements for OsO4 modification of RNA by investigating three known structured RNAs: the M-box, glycine riboswitch RNAs, and tRNA(asp) Our results show that OsO4 predominantly modifies RNA at uracils that are conformationally exposed on the surface of the RNA. We also show that changes in OsO4 reactivity at flexible positions in the RNA correlate with ligand-driven conformational changes in the RNA structure. Osmium tetroxide modification of RNA will provide insights into the structural features of RNAs that are relevant to their underlying biological functions.

Citation J. Zhang; D. Li; J. Zhang; D. Chen; A.I.H. Murchie.Osmium tetroxide as a probe of RNA structure.. RNA. 2017;23(4):483492. doi:10.1261/rna.057539.116

Related Elements

Osmium

See more Osmium products. Osmium (atomic symbol: Os, atomic number: 76) is a Block D, Group 8, Period 6 element with an atomic weight of 190.23. Osmium Bohr ModelThe number of electrons in each of osmium's shells is [2, 8, 18, 32, 14, 2] and its electron configuration is [Xe] 4f14 5d6 6s2. The osmium atom has a radius of 135 pm and a Van der Waals radius of 216 pm. Osmium was discovered and first isolated by Smithson Tennant in 1803. Elemental OsmiumIn its elemental form, osmium has a silvery blue cast apperance. Osmium has the highest melting point and the lowest vapor pressure of any of the platinum group of metals it is also the densest naturally ocurring element. Osmium is the least abundant stable element in the earth's crust. It is found in the alloys osmiridium and iridiosmium and as a free element. The origin of the name Osmium comes from the Greek word osme, meaning a smell or odor.

Related Forms & Applications