Tungsten(IV) Diselenide, Lithium Intercalated

CAS #:

Linear Formula:

LiWSe2

MDL Number:

N/A

EC No.:

N/A

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
Tungsten(IV) Diselenide, Lithium Intercalated
W-SE-01-P.LIIC
Pricing > SDS > Data Sheet >

Tungsten(IV) Diselenide, Lithium Intercalated Properties (Theoretical)

Compound Formula LiWSe2
Molecular Weight 348.70
Appearance Powder or flakes
Melting Point >400 °C
Boiling Point N/A
Density N/A
Solubility in H2O N/A

Tungsten(IV) Diselenide, Lithium Intercalated Health & Safety Information

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
RTECS Number N/A
Transport Information NONH for all modes of transport
MSDS / SDS

About Tungsten(IV) Diselenide, Lithium Intercalated

Lithium Intercalated Tungsten(IV) Diselenide is a unique 2D material composed primarily of the transition metal dichalcogenide (TMDC, or TMD) tungsten diselenide (WSe2) containing lithium ions inserted between the layers of its crystal lattice (known as intercalation). Lithium Intercalated Tungsten(IV) Diselenide is a p-type semiconductor with a band gap of 1-2 ev. The addition of lithium to the crystal structure of WSe2 enhances its electrochemical properties and gives it numerous applications including lithium-ion batteries (as a high-performance anode material) and other semiconductor-based technologies such as photovoltaic solar cells and optoelectronic devices. Please request a quote above to receive pricing information based on your specifications.

Tungsten(IV) Diselenide, Lithium Intercalated Synonyms

Lithium tungsten selenide, Lithium intercalated tungsten selenide, Lithium intercalated 2D-WSe2, lithium-doped tungsten diselenide, Li-W-Se, WSe2Li, Li:WSe2, LixWSe2

Chemical Identifiers

Linear Formula LiWSe2
MDL Number N/A
EC No. N/A
Pubchem CID N/A

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

Lithium

Lithium Bohr ModelSee more Lithium products. Lithium (atomic symbol: Li, atomic number: 3) is a Block S, Group 1, Period 2 element with an atomic weight of 6.94. The number of electrons in each of Lithium's shells is [2, 1] and its electron configuration is [He] 2s1. The lithium atom has a radius of 152 pm and a Van der Waals radius of 181 pm. Lithium was discovered by Johann Arvedson in 1817 and first isolated by William Thomas Brande in 1821. The origin of the name Lithium comes from the Greek wordlithose which means "stone." Lithium is a member of the alkali group of metals. It has the highest specific heat and electrochemical potential of any element on the period table and the lowest density of any elements that are solid at room temperature. Elemental LithiumCompared to other metals, it has one of the lowest boiling points. In its elemental form, lithium is soft enough to cut with a knife its silvery white appearance quickly darkens when exposed to air. Because of its high reactivity, elemental lithium does not occur in nature. Lithium is the key component of lithium-ion battery technology, which is becoming increasingly more prevalent in electronics.

Selenium

Selenium Bohr ModelSee more Selenium products. Selenium (atomic symbol: Se, atomic number: 34) is a Block P, Group 16, Period 4 element with an atomic radius of 78.96. The number of electrons in each of Selenium's shells is 2, 8, 18, 6 and its electron configuration is [Ar] 3d10 4s2 4p4. The selenium atom has a radius of 120 pm and a Van der Waals radius of 190 pm. Selenium is a non-metal with several allotropes: a black, vitreous form with an irregular crystal structure three red-colored forms with monoclinic crystal structures and a gray form with a hexagonal crystal structure, the most stable and dense form of the element. Elemental SeleniumOne of the most common uses for selenium is in glass production the red tint that it lends to glass neutralizes green or yellow tints from impurities in the glass materials. Selenium was discovered and first isolated by Jöns Jakob Berzelius and Johann Gottlieb Gahn in 1817. The origin of the name Selenium comes from the Greek word "Selênê," meaning moon.

Tungsten

See more Tungsten products. Tungsten (atomic symbol: W, atomic number: 74) is a Block D, Group 6, Period 6 element with an atomic weight of 183.84. The number of electrons in each of tungsten's shells is [2, 8, 18, 32, 12, 2] and its electron configuration is [Xe] 4f14 5d4 6s2. Tungsten Bohr ModelThe tungsten atom has a radius of 139 pm and a Van der Waals radius of 210 pm. Tungsten was discovered by Torbern Bergman in 1781 and first isolated by Juan José Elhuyar and Fausto Elhuyar in 1783. In its elemental form, tungsten has a grayish white, lustrous appearance. Elemental TungstenTungsten has the highest melting point of all the metallic elements and a density comparable to that or uranium or gold and about 1.7 times that of lead. Tungsten alloys are often used to make filaments and targets of x-ray tubes. It is found in the minerals scheelite (CaWO4) and wolframite [(Fe,Mn)WO4]. In reference to its density, Tungsten gets its name from the Swedish words tung and sten, meaning heavy stone.

TODAY'S TOP DISCOVERY!

May 02, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
Researchers develop enzymatic cocktail that can kill tuberculosis-causing mycobacteria

Researchers develop enzymatic cocktail that can kill tuberculosis-causing mycobacteria